CHECK FLIGHT CERTIFICATE

SINGLE, PISTO	CFS 2 iss 2		
Aircraft Type:			
Date:	Pilot:	Observer:	Reg:

Defects

No.	Defect	-/R/FT
	(use a continuation sheet as necessa	

(use a continuation sheet as necessary)

Conclusions/Comments

I CERTIFY that I have tested the above aircraft and have detailed the deficiencies and unsatisfactory features above. Those items annotated R or FT must be dealt with as shown in the following notes.

Name:	Signed:	Date:	Licence No.:
For CAA Use only	Report Logged by:	Date:	Report No.:

Performance	Climb		(delete as	Airfield:		
Average Weight			applicable)*			
Average Altitude		ft	The box below to be completed	Start Weight	Kg/Lbs*	
Average Temp.		°C	by the			
Speed			nominated engineer	Takeoff c	:g:	
Achieved Rate		fpm	ENGINEER'S DECLARATION			
Scheduled Rate		fpm	I certify that all the airtest results are within the specified allowable tolerances, and that the			
Margin		fpm	achieved climb rate was above*/below* scheduled.			
Permitted Margin	-70	fpm	If below, com Signed:	plete box /	X: Licence No	
			1			
Box X The climb r	ate was below sch	reduled	but was accepte	ed for the f	following reason:	

Note: aircraft with climb shortfalls more than 70 fpm should not be accepted.

NOTES

General

Pilots using this document should be familiar with the tests and techniques needed. If the results are to be submitted to the CAA the pilot must be specifically approved by the CAA.

Reg: Enter the aircraft registration mark. If the aircraft is not on the UK register, add the manufacturers serial number and expected UK registration (if known).

Pilot: Captain and co-pilot (where applicable).

Airfield: Departure airfield.

Start Weight: Actual all up weight at engine start. Also delete Kg or Lbs as appropriate.

Takeoff cg: Actual cg at lift-off, preferably as a % of the Mean Aerodynamic Chord.

Performance

Climb: Enter in these columns data from the climb.

Average Weight: The aircraft all up weight at the midpoint of the measured climb.

Average Altitude: The altitude at which the line drawn to average the measured points passes through at the mid time.

Average Temp: The temperature at which the line drawn to average the measured points passes through at the mid time.

Speed: The target climb speed (Indicated Airspeed.)

Achieved Rate: The climb rate as given by the slope of the line drawn to average the measured altitude points in feet per minute.

Scheduled Rate: The expected gross rate of climb read from the appropriate graph in the Flight Manual with any adjustments for configuration differences.

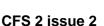
Margin: The difference between the Scheduled and Achieved rates of climb (negative if achieved is lower than scheduled). Permitted Margin: The maximum allowable difference between the Scheduled and Achieved rates of climb.

Defects

Enter all defects from the flight.

No.: The first column is to allow the items to be numbered.

Defect: Enter details of the defect.


-/*R*/*FT*: Classify each defect according to its impact on safety. Items requiring rectification before further flight for hire or reward or before the issue of the CofA should be marked 'R'. Additionally, items that require re-checking in-flight following rectification (such as inadequate climb performance) should be marked 'FT'. Items requiring both should be marked 'R/FT'.

Conclusions/Comments

Any conclusions, notes or comments useful for tracking defects may be entered. *Name:* Only the pilot who carried out the test may sign this sheet.

CHECK FLIGHT SCHEDULE

Aircraft Type:	Registrat	tion:	Date:	
Engine:	Propeller*:			

* Enter details if more than one type of propeller is permitted, otherwise state 'Standard'

WARNING

It is illegal to carry passengers on a test flight without a Certificate of Airworthiness in force, except persons performing duties in the aircraft in connection with the flight (normally the pilot and one observer).

Check flights entail greater risk than normal flight, and although it may be legal to carry passengers on a test flight with a Certificate of Airworthiness in force, it is strongly recommended that the pilot in command should, before accepting any other persons on a test flight, inform them that the risk is greater than on an ordinary flight.

A full seat harness or a diagonal shoulder strap must be fitted for spinning. A parachute should be worn.

1. **INTRODUCTION**

The intention of this schedule is to allow a general check of an aircraft against the stated operation in the Flight Manual, Pilot's Operating Handbook or equivalent. Where data are not available in the aircraft manuals, additional data may be given in Appendix 1. Where data are not available and the type is not listed, or where an air test is required to clear a Modification, appropriate schedules will be agreed between the Applicant and the CAA.

It is recommended that the tests are made in the sequence given. The results are to be written in ink in the spaces provided. Where measurement units are other than those specified (e.g. speed in kph), suitable conversions should be made and tolerances/units noted.

2. GENERAL

Operator/ Mainte Organisation:	enance				
Aerodrome Elevation:	ft	Aerodrome Temp:	°C	QNH:	mb

Weather Significant to Tests (eg. Cloud base and tops, any turbulence).

The aeroplane and its engine are at all times to be operated within the limitations imposed by the Certificate of Airworthiness (C of A), by cockpit placards and instrument colour coding, and by the Flight Manual. Aeroplanes for which there is no approved Flight Manual must be flown to the limitations in the appropriate Manual designated on the C of A. The normal operating checks and drills given in the Manual must be followed.

During the flight test, the crew must monitor the behaviour of all equipment and report any unserviceable items. In particular, if the test flight follows maintenance work, it is important to make sure that the items involved function satisfactorily, and that no additional faults have resulted accidentally.

Item 11 (Spinning) must be completed unless the aircraft is prohibited from spinning. This may be performed on a separate flight without an observer (note that weight and cg restrictions for spinning certain types mean that spinning <u>must</u> be conducted separately).

Appendix 1 – Additional information.

Appendix 2 must be completed in addition to this schedule for aircraft which are pressurized or are fitted with turbo-charged engines.

Appendix 3 must be completed in addition to this schedule for aircraft which are operated as a Seaplane, Floatplane or Amphibian.

3. LOADING

Unless it is impractical to do so, the aircraft should be loaded to maximum take-off weight or maximum landing weight if it is lower. It is permissible to test at a lower weight if climb data and stall speeds are scheduled with weight. Ballast should be used in order to comply with any prescribed loading requirements.

Max Take Off /Max Landing Weight	Permissible CG range	
Max Weight for spinning (Utility Category)	Permissible CG range	
Take-off Weight (actual) (kg/lb)	CG Position (actual)	

If the aircraft is not flown at Max Take Off Weight explain why:

4. **PRE-FLIGHT**

Fitness for Flight or Permit to Test issued and signed or valid CofA

Check that the following items are on board:-

- Aeroplane Flight Manual or other designated manual (eg. Owner's Manual, Pilot's Operating Handbook, Pilot's Notes).
- (2) Cabin fire extinguisher (if applicable).

SAT/UNSAT/NOT FITTED

5. **GROUND TESTS**

5.1 Flying Controls and Engine Controls

Flying Controls - Check for full travel, freedom and correct functioning:-

Elevator/Stabilizer	SAT/UNSAT	Elevator/Stabilizer trimmer	SAT/UNSAT
Ailerons	SAT/UNSAT		
Rudder	SAT/UNSAT	Rudder trimmer	SAT/UNSAT
Wing flaps	SAT/UNSAT	Slats (including locking)	SAT/UNSAT

Engine Controls (including friction/locking mechanisms)

Throttle	SAT/UNSAT	Carburettor heat	SAT/UNSAT
Propeller pitch	SAT/UNSAT	Cooling flap	SAT/UNSAT
Mixture	SAT/UNSAT	Fuel booster pump	SAT/UNSAT

5.2 Equipment

Check the following items for security and correct functioning:-

Safety harness/lap straps	SAT/UNSAT
Door/canopy fastening	SAT/UNSAT
Adjustment of pilots' seats and locking	SAT/UNSAT

5.3 Engine Run

6.

7.

The aeroplane should face cross-wind; if wind strength makes parking cross-wind hazardous, face into wind.

FROM AFM, POH	MEASURED		
Magneto test RPM	No.1 magneto off, RPM drop		
or RPM at which tes			
Max Split Max Drop Permitted Permitted	No.2 magneto off, RPM drop		
Carburettor hot air (or Alt air) test RPM	Hot air or Alternate air RPM drop		
Maximum power check:-	·'		
Power Check RPM from AFM			
Manifold pressure	Fuel		
RPM	pressure		
TAXYING			
Brake system pressure (if available)	SAT/UNSAT/NOT AVAILABLE		
Parking brake (including Lock and	SAT/UNSAT		
Release)			
Brakes (including freedom from binding and normal ability to hold aircraft at high engine power)	SAT/UNSAT		
Taxying (including nose-wheel steering/ tail-wheel steering/differential braking)	SAT/UNSAT		
TAKE-OFF			
Wing flap setting			
Trimmer settings - Elevator/Stabilizer			
- Rudder			
<u> </u>			

Behaviour during take-off:-Record any abnormal features, eg. unusual tendency to swing, ease or difficulty of raising nose-wheel/tail-wheel, control forces (including any unusual control forces) or wing heaviness.

Was artificial stall warning triggered?

YES/NO

8. CLIMB PERFORMANCE

Flight conditions:	Clear of cloud and turbulence, and well clear of any hills which could produce wave conditions.
Configuration:	Normal for en-route climb (see Manual).
Power:	Maximum Continuous with air intake in 'Cold' or 'Ram' air
Altimeter:	position. 1013 mb (29.92 in Hg).

Speed:	Scheduled en-route climb speed ; Maintain speed ±2 knots/mph
(knots/mph IAS)	(From AFM, POH)
Wing-flap position	Engine cooling -
	flap position

	!	 hap position	 !
Fuel used (annotate if estimated) k	.g/lb	 Climb Weight (kg/lb)	

Time (min)	Altitude (ft) 1013 mb	IAS (knots/mph)	OAT (°C)
0			
1/2			
1			
1½			
2			
21/2			
3			
31/2			
4			
41/2			
5			

NOTE: If no Outside Air Temperature gauge is fitted, obtain the temperature at the climb altitude for the local area from the Meteorological Office. State this figure and annotate accordingly. Towards the end of the climb record:

Manifold pressure				
RPM		Fuel pressure		
Oil pressure		Cylinder head temperature		
Oil temperature		-		
Trim positions:	Elevator/Stabilizer:		Rudder:	

If there is any difficulty in recording these figures during the timed climb, maintain the climb speed and power, and record them at the end of the climb.

9. STALLS

To be made with propeller control fully fine and throttle closed.

Fuel used (annotate if estimated)	kg/lb	Stalling Weight (kg/lb)	
	-	Weight at which stall speeds derived (kg/lb)	

Stall	1	2 ⁽¹⁾	3
Landing Gear (unless fixed)	Up	Up	Down
Flaps	Up	Take-Off	Landing
Trim, power off, at 1.5 x			
Scheduled stall speed			
(knots/mph IAS) ⁽²⁾			
Stall warning			
(knots/mph IAS)			
Type of artificial stall warning			
(eg Horn/Light)			
Stall (knots/mph IAS)			
Scheduled stall speed at		1	
stated weight (knots/mph			
IAS) ⁽²⁾		;	
Did control column reach			
back stop?			
Sequence of nose and wing			
drop (if any)			
Total angle of wing drop (see			
notes below)			
Other characteristics (eg			
buffet prior to stall)			

(1) To be made on aeroplanes where a take-off wing-flap setting is specified.

(2) From AFM, POH. If non-scheduled see Appendix 1. If speeds at a single weight are given, scheduled speeds at a different weight may be calculated as V_{S2} = $V_{S1} \times (W_2/W_1)^{1/2}$

Notes: Deceleration to stall to be at 1 kt/sec (1 mph/sec).

- Required limits -
 - stall warning 4 KIAS to 12 KIAS (4 mph to 14 mph) above measured stall speed
 - Stall speed +3 to -5 kts/mph relative to scheduled stall speed
 - Wing drop to be contained within 20° of roll (note that it is permissible to use small amounts of aileron)

10. Cruise Checks

10.1 Maximum Speed in Level Flight

Landing gear and wing flaps retracted.

Accelerate the aeroplane in level flight -

Fixed pitch propeller: Full throttle or maximum continuous RPM Constant speed propeller: 200 RPM below maximum permissible, 2" below max MP

In level flight, record:-	Altitude		ΟΑΤ			
IAS (knots/mph)			vator/Stab			
RPM		Ru	dder trimm	er setting		
MP						

10.2 **DIVE TO V_{NE}**

THIS TEST MUST ONLY BE FLOWN IN SMOOTH AIR CONDITIONS

Increase speed up to V_{NE} . Keep RPM within maximum permissible. If any unusual airframe or control vibration is felt, immediately reduce speed by gradually pulling the control column back and by closing the throttle. Record:-

Scheduled V_{NE}

Any unusual behaviour

Whether the control forces and responses over small angles are normal Steadiness of propeller governing (if applicable) Maximum IAS (knots/mph)

]	

Regain cruising flight by closing throttle and gradually pulling the control column back. Record:-

Engine behaviour on closing throttle

Propeller governing (if applicable)

SAT/UNSAT	
SAT/UNSAT	

11. SPINS (Applicable only to aeroplanes cleared for deliberate spinning).

Note that it may not be possible to conduct this item on the same flight as the other items due to loading/cg restrictions. If flown separately:

A minimum of one spin is to be made in each direction. Recovery should be initiated after two turns.

Direction of rotation	Left	Right
Whether spin or spiral dive		
Turns to recover		
Any abnormality of spin or recovery	SAT/UNSAT	SAT/UNSAT

12. FUNCTIONING CHECKS

When appropriate during the flight, check the following:-

12.1 Flying Controls

	Friction	Backlash	Are control forces normal?
Elevator/Stabilizer	SAT/UNSAT	SAT/UNSAT	YES/NO
Aileron	SAT/UNSAT	SAT/UNSAT	YES/NO
Rudder	SAT/UNSAT	SAT/UNSAT	YES/NO
Elevator/Stabilizer Trimmer	SAT/UNSAT	SAT/UNSAT	YES/NO
Rudder Trimmer	SAT/UNSAT	SAT/UNSAT	YES/NO

During normal cruise, check that aeroplane:-

(a)	can be trimmed to fly level	YES/NO
(b)	has no tendency to fly one wing low	SAT/UNSAT
(c)	flies straight with slip indicator central	YES/NO

12.2 UnPowered and Powered Wing-flaps

Confirm no roll induced when operating flaps SAT/UNSAT

12.3 **Powered Wing-flaps** (Omit for unpowered flaps)

Operate as follows recording time and any unusual change of longitudinal trim with flap position and any significant change in lateral trim.

12.3.1

	Limit Speed	Time	Comments
From Up to Take-off*		(sec)	
From Take-off to Down*		(sec)	

*at about 5 kts/mph below limiting speed for setting.

If the flap does not move to the full down position:-

- (a) Record angle at which flaps stops
- (b) With flap selected Down, reduce speed until flap reaches full down position. Record IAS (knots/mph).

12.3.2 From Down to Take-off† From Take-off to Up†

e-off to Up† (sec)

(sec)

†at any convenient speed below limiting speeds.

12.4 Landing Gear - Normal Operation

Power-operated systems - time extension and retraction at limiting speed(s).

From Up to Down (sec)	From Down to Up (sec)						
Manually operated systems - check operation is SAT/UNSAT satisfactory.							
Check landing gear unsafe warning. With landing gear retracted, select pitch control fully fine, close throttle until warning sounds, record:-							
RPM	Manifold pressure						

Check landing gear unsafe warning, with landing gear retracted, set full flap.

Confirm warning satisfactory.

SAT/UNSAT

13. Fuel System

During the flight, feed from each fuel tank in turn for not less than 3 minutes.

Record:-

System functioning on each tank (identify which)				
Fuel selector	SAT/UNSAT	SAT/UNSAT	SAT/UNSAT	SAT/UNSAT
Fuel gauges	SAT/UNSAT	SAT/UNSAT	SAT/UNSAT	SAT/UNSAT

14. Electrical/Avionics Systems

Check all electrical and avionics equipment for satisfactory operation:-

Record generator charging rate under maximum electrical load.

15. Gyro Instruments

Check behaviour of gyro instruments. Record unsatisfactory items:-

If air-pump Press gauge during cruise RPM at

16. **Other Instruments**

Check for satisfactory functioning. Record unsatisfactory items:-

17. **Radio**

Complete Radio Check Flight Report, if required. Schedule available on application.

Single, Piston-Engined Aeroplanes Up To 2730 kg Page 13 of 15

18. Emergency Extension of Landing Gear

(Note: This check should only be conducted if the normal system operation can be restored in-flight.)

Final extension of the gear before landing to be made on the emergency system. Record operation:-

SAT/UNSAT

19. LANDING

With landing gear extended and wing-flaps in the landing position, carry out a normal landing following an approach at the speed specified in the Manual:-

Behaviour during landing: Record any abnormal features, eg. inability to trim, unusual control forces, difficulty in flaring, 'wheelbarrowing' or porpoising after touchdown.

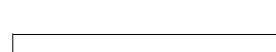
Was artificial stall warning triggered?

YES/NO

20. POST-FLIGHT

20.1 Placards

Check that all Cockpit, Cabin, Baggage Space and external placards are fitted and legible.


20.2 Lighting

Check that all external and internal lighting is serviceable.

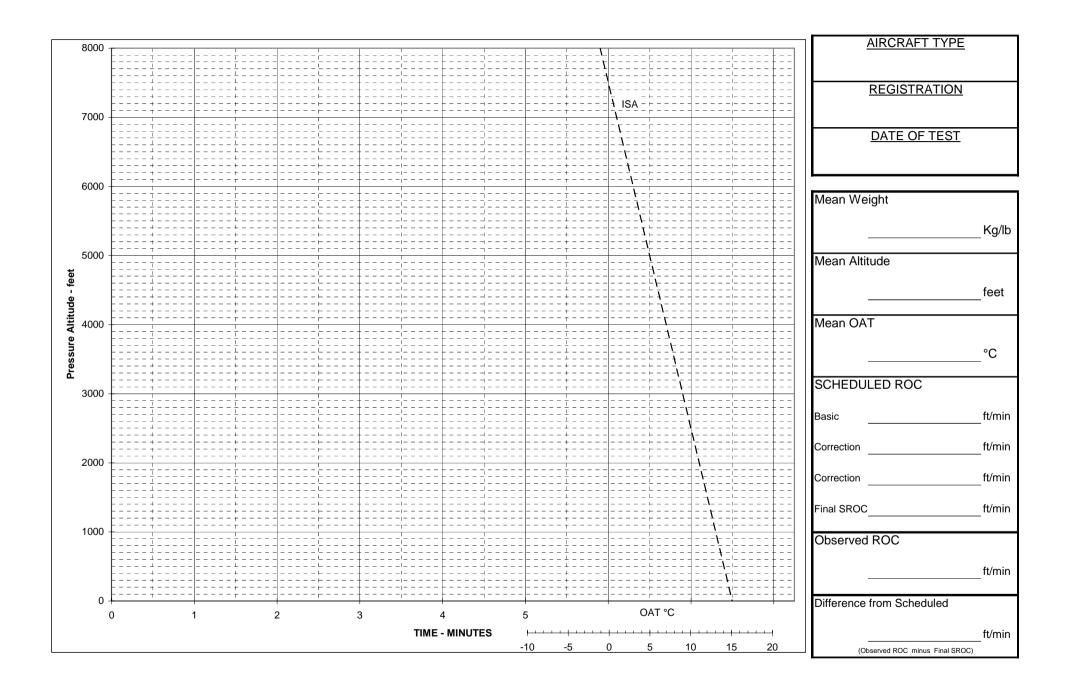
20.3 Check Flight Certificate

Complete the Check Flight Certificate at the front of this Schedule.

CFS 2 issue 2

21. Climb Performance

Plot results on the attached graph. Drawing a straight line in a position which is a best fit to the points. Take the slope of this line as the average climb rate. Compare results with those in the AFM or POH. If none given use Appendix No. 1. If none given in AFM POH or Appendix No. 1, use any available data but state origin and attach a photocopy. If no information is available, compare achieved results with previous measurements on the same aircraft/aircraft type (this information can be obtained from CAA Flight Department). Where climb rate is given at specific weights, temperatures or altitudes use interpolation (for each parameter affected) to find the value at the conditions flown (i.e. if the climb rate at the actual input value [such as weight] is not given, determine a climb rate that is proportionately between the rates given at the points either side of the actual input value according to how close it is to either).


It is important that the results are presented as observed, and that any significant meteorological conditions are noted.

To assist CAA checks of scheduled climb rates, note any corrections made to the basic scheduled values for items such as temperature, CAA change sheet etc. on the graph in the spaces provided. Annotate scheduled climb rate with the weight for which it is applicable if it is different to the actual climb weight.

NOTE: Where no correction for temperature is given in the designated Manual, the following temperature correction is to be applied:-

Where the indicated outside air temperature is above International Standard Atmosphere for the altitude, the scheduled rate of climb may be reduced by 4 ft/min/°C (2.2 ft/min/°F). When the indicated OAT is below ISA, the scheduled rate of climb is to be increased by the same amount.

Transfer the relevant numbers on the graph to the Check Flight Certificate at the front of this schedule.

